Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(11): e9458, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36381394

RESUMO

Agriculture is a leading cause of biodiversity loss and significantly impacts freshwater biodiversity through many stressors acting locally and on the landscape scale. The individual effects of these numerous stressors are often difficult to disentangle and quantify, as they might have nonlinear impacts on biodiversity. Within agroecosystems, ponds are biodiversity hotspots providing habitat for many freshwater species and resting or feeding places for terrestrial organisms. Ponds are strongly influenced by their terrestrial surroundings, and understanding the determinants of biodiversity in agricultural landscapes remains difficult but crucial for improving conservation policies and actions. We aimed to identify the main effects of environmental and spatial variables on α-, ß-, and γ-diversities of macroinvertebrate communities inhabiting ponds (n = 42) in an agricultural landscape in the Northeast Germany, and to quantify the respective roles of taxonomic turnover and nestedness in the pondscape. We disentangled the nonlinear effects of a wide range of environmental and spatial variables on macroinvertebrate α- and ß-biodiversity. Our results show that α-diversity is impaired by eutrophication (phosphate and nitrogen) and that overshaded ponds support impoverished macroinvertebrate biota. The share of arable land in the ponds' surroundings decreases ß-diversity (i.e., dissimilarity in community), while ß-diversity is higher in shallower ponds. Moreover, we found that ß-diversity is mainly driven by taxonomic turnover and that ponds embedded in arable fields support local and regional diversity. Our findings highlight the importance of such ponds for supporting biodiversity, identify the main stressors related to human activities (eutrophication), and emphasize the need for a large number of ponds in the landscape to conserve biodiversity. Small freshwater systems in agricultural landscapes challenge us to compromise between human demands and nature conservation worldwide. Identifying and quantifying the effects of environmental variables on biodiversity inhabiting those ecosystems can help address threats impacting freshwater life with more effective management of pondscapes.

2.
Ecol Evol ; 12(8): e9206, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35983173

RESUMO

Water-filled tree holes are unique ecosystems that may occur high up in tree crowns and are essentially aquatic islands in the sky. Insect larvae, mesofauna, and other organisms colonize the waterbodies and feed on the accumulating detritus. Water-filled tree holes are not only important habitats for these species but have been used as model systems in ecology. Here, we review more than 100 years of research on tree-hole inhabiting organisms and show that most studies focus on selected or even single species (most of which are mosquitoes), whereas only few studies examine groups other than insects, especially in the tropics. Using a vote counting of results and a meta-analysis of community studies, we show that the effects of tree-hole size and resources on abundance and richness were investigated most frequently. Both were found to have a positive effect, but effect sizes were modulated by site-specific environmental variables such as temperature or precipitation. We also show that parameters such as the height of the tree holes above ground, tree-hole density, predation, and detritus type can be important drivers of organism abundance or richness but are less often tested. We identify several important research gaps and potential avenues for future research. Specifically, future studies should investigate the structure, functions, and temporal dynamics of tree-hole food webs and their cross-system interactions, for example, with terrestrial predators that act as a connection to their terrestrial surroundings in meta-ecosystems. Global observational or experimental tree-hole studies could contribute pivotal information on spatial variation of community structure and environmental drivers of community assembly. With a better understanding of these unique aquatic habitats in terrestrial ecosystems, natural and artificial tree holes can not only serve as model systems for addressing fundamental ecological questions but also serve as indicator systems of the impacts of environmental change on ecosystems.

3.
Insects ; 13(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35323574

RESUMO

In Austria, only fragmented information on the occurrence of alien and potentially invasive mosquito species exists. The aim of this study is a nationwide overview on the situation of those mosquitoes in Austria. Using a nationwide uniform protocol for the first time, mosquito eggs were sampled with ovitraps at 45 locations in Austria at weekly intervals from May to October 2020. The sampled eggs were counted and the species were identified by genetic analysis. The Asian tiger mosquito Aedes albopictus was found at two sites, once in Tyrol, where this species has been reported before, and for the first time in the province of Lower Austria, at a motorway rest stop. The Asian bush mosquito Aedes japonicus was widespread in Austria. It was found in all provinces and was the most abundant species in the ovitraps by far. Aedes japonicus was more abundant in the South than in the North and more eggs were found in habitats with artificial surfaces than in (semi-) natural areas. Further, the number of Ae. japonicus eggs increased with higher ambient temperature and decreased with higher wind speed. The results of this study will contribute to a better estimation of the risk of mosquito-borne disease in Austria and will be a useful baseline for a future documentation of changes in the distribution of those species.

4.
Glob Chang Biol ; 28(11): 3694-3710, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35243726

RESUMO

Current climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short- versus long-term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non-rolled control leaves. However, the magnitude of the leaf rolls' effect differed between long- and short-term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long-term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.


Assuntos
Artrópodes , Animais , Biodiversidade , Mudança Climática , Ecossistema , Folhas de Planta
5.
Ecology ; 103(4): e3639, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35060615

RESUMO

The construction of shelters on plants by arthropods might influence other organisms via changes in colonization, community richness, species composition, and functionality. Arthropods, including beetles, caterpillars, sawflies, spiders, and wasps often interact with host plants via the construction of shelters, building a variety of structures such as leaf ties, tents, rolls, and bags; leaf and stem galls, and hollowed out stems. Such constructs might have both an adaptive value in terms of protection (i.e., serve as shelters) but may also exert a strong influence on terrestrial community diversity in the engineered and neighboring hosts via colonization by secondary occupants. Although different traits of the host plant (e.g., physical, chemical, and architectural features) may affect the potential for ecosystem engineering by insects, such effects have been, to a certain degree, overlooked. Further analyses of how plant traits affect the occurrence of shelters may therefore enrich our understanding of the organizing principles of plant-based communities. This data set includes more than 1000 unique records of ecosystem engineering by arthropods, in the form of structures built on plants. All records have been published in the literature, and span both natural structures (91% of the records) and structures artificially created by researchers (9% of the records). The data were gathered between 1932 and 2021, across more than 50 countries and several ecosystems, ranging from polar to tropical zones. In addition to data on host plants and engineers, we aggregated data on the type of constructs and the identity of inquilines using these structures. This data set highlights the importance of these subtle structures for the organization of terrestrial arthropod communities, enabling hypotheses testing in ecological studies addressing ecosystem engineering and facilitation mediated by constructs. There are no copyright restrictions and please cite this paper when using the data in publications.


Assuntos
Artrópodes , Animais , Biodiversidade , Ecossistema , Insetos , Folhas de Planta , Plantas
6.
Trends Ecol Evol ; 37(5): 454-467, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065823

RESUMO

The biodiversity-ecosystem functioning concept asserts that processes in ecosystems are markedly influenced by species richness and other facets of biodiversity. However, biodiversity-ecosystem functioning studies have been largely restricted to single ecosystems, ignoring the importance of functional links - such as the exchange of matter, energy, and organisms - between coupled ecosystems. Here we present a basic concept and outline three pathways of cross-boundary biodiversity effects on ecosystem processes and propose an agenda to assess such effects, focusing on terrestrial-aquatic linkages to illustrate the case. This cross-boundary perspective of biodiversity-ecosystem functioning relationships presents a promising frontier for biodiversity and ecosystem science with repercussions for the conservation, restoration, and management of biodiversity and ecosystems from local to landscape scales.


Assuntos
Biodiversidade , Ecossistema
7.
PLoS One ; 16(11): e0255619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34843463

RESUMO

Alpine lakes support unique communities which may respond with great sensitivity to climate change. Thus, an understanding of the drivers of the structure of communities inhabiting alpine lakes is important to predict potential changes in the future. To this end, we sampled benthic macroinvertebrate communities and measured environmental variables (water temperature, dissolved oxygen, conductivity, pH, nitrate, turbidity, blue-green algal phycocyanin, chlorophyll-a) as well as structural parameters (habitat type, lake size, maximum depth) in 28 lakes within Hohe Tauern National Park, Austria, between altitudes of 2,000 and 2,700 m a.s.l. The most abundant macroinvertebrate taxa that we found were Chironomidae and Oligochaeta. Individuals of Coleoptera, Diptera, Hemiptera, Plecoptera, Trichoptera, Tricladida, Trombidiformes, Veneroida were found across the lakes and determined to family level. Oligochaeta were not determined further. Generalized linear modeling and permanova were used to identify the impact of measured parameters on macroinvertebrate communities. We found that where rocky habitats dominated the lake littoral, total macroinvertebrate abundance and family richness were lower while the ratio of Ephemeroptera, Plecoptera and Trichoptera (EPT) was higher. Zoo- and phytoplankton densities were measured in a subset of lakes but were not closely associated with macroinvertebrate abundance or family richness. With increasing elevation, macroinvertebrate abundances in small and medium-sized lakes increased while they decreased in large lakes, with a clear shift in community composition (based on families). Our results show that habitat parameters (lake size, habitat type) have a major influence on benthic macroinvertebrate community structure whereas elevation itself did not show any significant effects on communities. However, even habitat parameters are likely to change under climate change scenarios (e.g. via increased erosion) and this may affect alpine lake macroinvertebrates.


Assuntos
Biodiversidade , Ecossistema , Invertebrados , Lagos , Animais , Áustria , Mudança Climática , Monitoramento Ambiental
8.
Curr Biol ; 31(19): R1195-R1201, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34637731

RESUMO

Grasslands comprise one of Earth's dominant biomes, accounting for up to 40% of its terrestrial area (Figure 1). The fundamental components of grassland habitats are grasses and grass-like plants, but diverse assemblages of other plant life forms and diverse animal communities also contribute to grassland biodiversity. Grasses have evolved traits allowing them to cope with climatic extremes, specific soil conditions, fires, and herbivory, all of which sustain grasslands by limiting the establishment, survival, growth, and dominance of woody vegetation. Grasslands occur in almost all climatic zones, except the poles, extreme arid zones, and the highest mountains (Figure 1). Temperate grassland habitats include Eurasian steppes, North American prairies, the pampas lowlands of South America, and Patagonian steppe. Tropical and subtropical grasslands (savannas) occur mostly in Africa and Australia, but are also found in the north of South America, in the southern United States, South Asia, and Southeast Asia.


Assuntos
Incêndios , Pradaria , Animais , Biodiversidade , Ecossistema , Herbivoria , Plantas , Poaceae
9.
PLoS One ; 15(11): e0231122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33232338

RESUMO

Grassland biodiversity is vulnerable to land use change. How to best manage semi-natural grasslands for maintaining biodiversity is still unclear in many cases because land-use processes may depend on environmental conditions and the indirect effects of land-use on biodiversity mediated by altered abiotic and biotic factors are rarely considered. Here we evaluate the relative importance of the direct and indirect effects of grazing intensity on plant communities along an elevational gradient on a large topographic scale in the Eastern Carpathians in Ukraine. We sampled for two years 31 semi-natural grasslands exposed to cattle grazing. Within each grassland site we measured plant community properties such as the number of species, functional groups, and the proportion of species undesirable for grazing. In addition, we recorded cattle density (as a proxy for grazing intensity), soil properties (bare soil exposure, soil organic carbon, and soil pH) and densities of soil decomposers (earthworms and soil microorganisms). We used structural equation modelling to explore the direct and indirect effects of grazing intensity on plant communities along the elevation gradient. We found that cattle density decreased plant species and functional diversity but increased the proportion of undesirable species. Some of these effects were directly linked to grazing intensity (i.e., species richness), while others (i.e., functional diversity and proportion of undesirable species) were mediated via bare soil exposure. Although grazing intensity decreased with elevation, the effects of grazing on the plant community did not change along the elevation gradient. Generally, elevation had a strong positive direct effect on plant species richness as well as a negative indirect effect, mediated via altered soil acidity and decreased decomposer density. Our results indicate that plant diversity and composition are controlled by the complex interplay among grazing intensity and changing environmental conditions along an elevation gradient. Furthermore, we found lower soil pH, organic carbon and decomposer density with elevation, indicating that the effects of grazing on soil and related ecosystem functions and services in semi-natural grasslands may be more pronounced with elevation. This demonstrates that we need to account for environmental gradients when attempting to generalize effects of land-use intensity on biodiversity.


Assuntos
Agricultura/métodos , Herbivoria/fisiologia , Plantas/classificação , Animais , Biodiversidade , Bovinos , Pradaria , Concentração de Íons de Hidrogênio , Modelos Teóricos , Desenvolvimento Vegetal , Solo/química , Ucrânia
10.
Biol Rev Camb Philos Soc ; 95(4): 1073-1096, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32627362

RESUMO

Organismal movement is ubiquitous and facilitates important ecological mechanisms that drive community and metacommunity composition and hence biodiversity. In most existing ecological theories and models in biodiversity research, movement is represented simplistically, ignoring the behavioural basis of movement and consequently the variation in behaviour at species and individual levels. However, as human endeavours modify climate and land use, the behavioural processes of organisms in response to these changes, including movement, become critical to understanding the resulting biodiversity loss. Here, we draw together research from different subdisciplines in ecology to understand the impact of individual-level movement processes on community-level patterns in species composition and coexistence. We join the movement ecology framework with the key concepts from metacommunity theory, community assembly and modern coexistence theory using the idea of micro-macro links, where various aspects of emergent movement behaviour scale up to local and regional patterns in species mobility and mobile-link-generated patterns in abiotic and biotic environmental conditions. These in turn influence both individual movement and, at ecological timescales, mechanisms such as dispersal limitation, environmental filtering, and niche partitioning. We conclude by highlighting challenges to and promising future avenues for data generation, data analysis and complementary modelling approaches and provide a brief outlook on how a new behaviour-based view on movement becomes important in understanding the responses of communities under ongoing environmental change.


Assuntos
Migração Animal/fisiologia , Biodiversidade , Fenômenos Ecológicos e Ambientais , Animais , Simulação por Computador , Estágios do Ciclo de Vida , Modelos Biológicos , Estações do Ano
11.
Nat Ecol Evol ; 4(3): 393-405, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094542

RESUMO

The continuing loss of global biodiversity has raised questions about the risk that species extinctions pose for the functioning of natural ecosystems and the services that they provide for human wellbeing. There is consensus that, on single trophic levels, biodiversity sustains functions; however, to understand the full range of biodiversity effects, a holistic and multitrophic perspective is needed. Here, we apply methods from ecosystem ecology that quantify the structure and dynamics of the trophic network using ecosystem energetics to data from a large grassland biodiversity experiment. We show that higher plant diversity leads to more energy stored, greater energy flow and higher community-energy-use efficiency across the entire trophic network. These effects of biodiversity on energy dynamics were not restricted to only plants but were also expressed by other trophic groups and, to a similar degree, in aboveground and belowground parts of the ecosystem, even though plants are by far the dominating group in the system. The positive effects of biodiversity on one trophic level were not counteracted by the negative effects on adjacent levels. Trophic levels jointly increased the performance of the community, indicating ecosystem-wide multitrophic complementarity, which is potentially an important prerequisite for the provisioning of ecosystem services.


Assuntos
Ecossistema , Pradaria , Biodiversidade , Ecologia , Humanos , Plantas
12.
Sci Total Environ ; 704: 135418, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31896218

RESUMO

Ecological communities in forests have been shown to be strongly affected by forest management but a detailed understanding of how different components of management affect insect communities directly and indirectly via environmental variables, how management influences functional trait diversity and composition, and whether these results can be transferred to other functional groups besides insects (e.g. bacteria or nematodes) is still missing. To address these questions we used water-filled tree holes, which provide habitats for insect larvae and other aquatic organisms in forests, as a model system. We mapped all water-filled tree holes in 75 forest plots (1 ha) under different management intensity in three regions of Germany. We measured structural and climatic conditions at different spatial scales, sampled insect communities in 123 tree holes and bacterial and nematode communities in a subset of these. We found that forest management in terms of harvesting intensity and the proportion of non-natural tree species (species not part of the natural vegetation at the sites) negatively affected tree-hole abundance. An increased proportion of non-natural tree species had a positive direct effect on insect richness and functional diversity in the tree holes. However, a structural equation model showed that increasing management intensity had negative indirect effects on insect abundance and richness, operating via environmental variables at stand and tree-hole scale. Functional diversity and trait composition of insect communities similarly responded to changes in management-related variables. In contrast to insects, bacterial and nematode richness were not directly impacted by forest management but by other environmental variables. Our results suggest that forest management may strongly alter insect communities of tree holes, while nematodes and bacteria seem less affected. Most effects in our study were indirect and negative, indicating that management has often complex consequences for forest communities that should be taken into account in forest management schemes.


Assuntos
Organismos Aquáticos , Animais , Biodiversidade , Ecossistema , Alemanha , Insetos
13.
Bioscience ; 69(11): 888-899, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31719711

RESUMO

Global change has complex eco-evolutionary consequences for organisms and ecosystems, but related concepts (e.g., novel ecosystems) do not cover their full range. Here we propose an umbrella concept of "ecological novelty" comprising (1) a site-specific and (2) an organism-centered, eco-evolutionary perspective. Under this umbrella, complementary options for studying and communicating effects of global change on organisms, ecosystems, and landscapes can be included in a toolbox. This allows researchers to address ecological novelty from different perspectives, e.g., by defining it based on (a) categorical or continuous measures, (b) reference conditions related to sites or organisms, and (c) types of human activities. We suggest striving for a descriptive, non-normative usage of the term "ecological novelty" in science. Normative evaluations and decisions about conservation policies or management are important, but require additional societal processes and engagement with multiple stakeholders.

14.
Adv Ecol Res ; 61: 1-54, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31908360

RESUMO

Concern about the functional consequences of unprecedented loss in biodiversity has prompted biodiversity-ecosystem functioning (BEF) research to become one of the most active fields of ecological research in the past 25 years. Hundreds of experiments have manipulated biodiversity as an independent variable and found compelling support that the functioning of ecosystems increases with the diversity of their ecological communities. This research has also identified some of the mechanisms underlying BEF relationships, some context-dependencies of the strength of relationships, as well as implications for various ecosystem services that mankind depends upon. In this paper, we argue that a multitrophic perspective of biotic interactions in random and non-random biodiversity change scenarios is key to advance future BEF research and to address some of its most important remaining challenges. We discuss that the study and the quantification of multitrophic interactions in space and time facilitates scaling up from small-scale biodiversity manipulations and ecosystem function assessments to management-relevant spatial scales across ecosystem boundaries. We specifically consider multitrophic conceptual frameworks to understand and predict the context-dependency of BEF relationships. Moreover, we highlight the importance of the eco-evolutionary underpinnings of multitrophic BEF relationships. We outline that FAIR data (meeting the standards of findability, accessibility, interoperability, and reusability) and reproducible processing will be key to advance this field of research by making it more integrative. Finally, we show how these BEF insights may be implemented for ecosystem management, society, and policy. Given that human well-being critically depends on the multiple services provided by diverse, multitrophic communities, integrating the approaches of evolutionary ecology, community ecology, and ecosystem ecology in future BEF research will be key to refine conservation targets and develop sustainable management strategies.

15.
PLoS One ; 13(2): e0191426, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29401522

RESUMO

The mechanisms which structure communities have been the focus of a large body of research. Here, we address the question if habitat characteristics describing habitat quality may drive changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our system, changes in canopy cover along an environmental gradient may affect resource availability, disturbance in form of daily water temperature fluctuations and predation, and thus may lead to changes in community structure of bromeliad microfauna through differences in habitat quality along this gradient. Indeed, we observed distinct changes in microfauna community composition along the environmental gradient explained by changes in the extent of daily water temperature fluctuations. We found beta diversity to be higher under low habitat quality (low canopy cover) than under high habitat quality (high canopy cover), which could potentially be explained by a higher relative importance of stochastic processes under low habitat quality. We also partitioned beta diversity into turnover and nestedness components and we found a nested pattern of beta diversity along the environmental gradient, with communities from the lower-quality habitat being nested subsets of communities from the higher-quality habitat. However, this pattern resulted from an increase in microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-environment relationships our results contribute to the mechanistic understanding of community dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics representing habitat quality in structuring communities, and suggest that this information may help to improve conservation practices of small freshwater ecosystems.


Assuntos
Biodiversidade , Bromeliaceae , Ecossistema , Animais , Brasil , Escuridão , Cadeia Alimentar , Florestas , Água Doce , Microclima , Modelos Biológicos , Processos Estocásticos , Árvores
16.
Ecol Evol ; 8(4): 2280-2289, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29468043

RESUMO

One of the processes that may play a key role in plant species coexistence and ecosystem functioning is plant-soil feedback, the effect of plants on associated soil communities and the resulting feedback on plant performance. Plant-soil feedback at the interspecific level (comparing growth on own soil with growth on soil from different species) has been studied extensively, while plant-soil feedback at the intraspecific level (comparing growth on own soil with growth on soil from different accessions within a species) has only recently gained attention. Very few studies have investigated the direction and strength of feedback among different taxonomic levels, and initial results have been inconclusive, discussing phylogeny, and morphology as possible determinants. To test our hypotheses that the strength of negative feedback on plant performance increases with increasing taxonomic level and that this relationship is explained by morphological similarities, we conducted a greenhouse experiment using species assigned to three taxonomic levels (intraspecific, interspecific, and functional group level). We measured certain fitness-related aboveground traits and used them along literature-derived traits to determine the influence of morphological similarities on the strength and direction of the feedback. We found that the average strength of negative feedback increased from the intraspecific over the interspecific to the functional group level. However, individual accessions and species differed in the direction and strength of the feedback. None of our results could be explained by morphological dissimilarities or individual traits. Synthesis. Our results indicate that negative plant-soil feedback is stronger if the involved plants belong to more distantly related species. We conclude that the taxonomic level is an important factor in the maintenance of plant coexistence with plant-soil feedback as a potential stabilizing mechanism and should be addressed explicitly in coexistence research, while the traits considered here seem to play a minor role.

17.
Ecol Lett ; 21(2): 167-180, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29280282

RESUMO

The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function.


Assuntos
Biodiversidade , Ecossistema , Ecologia
18.
R Soc Open Sci ; 4(10): 170549, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29134070

RESUMO

The increasing amount of plastic littered into the sea may provide a new substratum for benthic organisms. These marine fouling communities on plastic have not received much scientific attention. We present, to our knowledge, the first comprehensive analysis of their macroscopic community composition, their primary production and the polymer degradation comparing conventional polyethylene (PE) and a biodegradable starch-based plastic blend in coastal benthic and pelagic habitats in the Mediterranean Sea. The biomass of the fouling layer increased significantly over time and all samples became heavy enough to sink to the seafloor. The fouling communities, consisting of 21 families, were distinct between habitats, but not between polymer types. Positive primary production was measured in the pelagic, but not in the benthic habitat, suggesting that large accumulations of floating plastic could pose a source of oxygen for local ecosystems, as well as a carbon sink. Contrary to PE, the biodegradable plastic showed a significant loss of tensile strength and disintegrated over time in both habitats. These results indicate that in the marine environment, biodegradable polymers may disintegrate at higher rates than conventional polymers. This should be considered for the development of new materials, environmental risk assessment and waste management strategies.

19.
Sci Rep ; 7(1): 7695, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794462

RESUMO

Fear of predation has been shown to affect prey fitness and behaviour, however, to date little is known about the underlying genetics of responses to predator-associated risk. In an effort to fill this gap we exposed four naïve clones of green peach aphid (Myzus persicae), maintained on the model crop Brassica oleracea, to different types of cues from aphid lion (Chrysoperla carnea). The respective predation risks, we termed Fear Factors, were either lethal (consumption by predator), or non-lethal (non-consumptive predator-associated cues: plant-tethered predator cadavers and homogenised shoot-sprayed or soil-infused blends of predator remains). Our results show that the non-lethal risk cues differentially impeded prey reproductive success that varied by clone, suggesting genotype-specific response to fear of predation. Furthermore, whether plants were perceived as being safe or risky influenced prey responses as avoidance behaviour in prey depended on clone type. Our findings highlight that intra-specific genetic variation underlies prey responses to consumptive and non-consumptive effects of predation. This allows selection to act on anti-predator responses to fear of predation that may ramify and influence higher trophic levels in model agroecosystems.


Assuntos
Medo , Herbivoria , Floema , Comportamento Predatório , Animais , Afídeos/fisiologia , Sinais (Psicologia) , Ecologia , Variação Genética , Interações Hospedeiro-Patógeno
20.
Ecol Evol ; 7(5): 1627-1634, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28261471

RESUMO

Ecological communities hosted within phytotelmata (plant compartments filled with water) provide an excellent opportunity to test ecological theory and to advance our understanding of how local and global environmental changes affect ecosystems. However, insights from bromeliad phytotelmata communities are currently limited by scarce accounts of microfauna assemblages, even though these assemblages are critical in transferring, recycling, and releasing nutrients in these model ecosystems. Here, we analyzed natural microfaunal communities in leaf compartments of 43 bromeliads to identify the key environmental filters underlying their community structures. We found that microfaunal community richness and abundance were negatively related to canopy openness and vertical height above the ground. These associations were primarily driven by the composition of amoebae and flagellate assemblages and indicate the importance of bottom-up control of microfauna in bromeliads. Taxonomic richness of all functional groups followed a unimodal relationship with water temperature, peaking at 23-25°C and declining below and above this relatively narrow thermal range. This suggests that relatively small changes in water temperature under expected future climate warming may alter taxonomic richness and ecological structure of these communities. Our findings improve the understanding of this unstudied but crucial component of bromeliad ecosystems and reveal important environmental filters that likely contribute to overall bromeliad community structure and function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA